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Effective potentials of quantum strip waveguides and their
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Received 12 June 1995

Abstract. We investigate the dynamics of a particle constrained to move on a curved quantum
strip waveguide embedded in three-space, subject to Dirichlet boundary conditions. By
establishing a coordinate system which allows a more general formulation of the dynamics, we
demonstrate consistency with previous results and provide evidence that the presence of torsion
introduces a further effective potential term. This result has implications for nanostructure device
engineering.

1. Introduction

Recent advances in semiconductor physics have enabled the fabrication of nanostructure
devices which have the four properties described by Duclos and Exner [6]:

(p1) nanoscale dimension (typically between 5 and 500 nm)
(p2) high purity with an electron mean free path greater than 1 micron
(p3) crystalline structure of the semiconductor lattice
(p4) suppression of the wavefunction at boundaries between different materials.

Buot [2] and Sundaramet al [15] discuss methods for fabrication of such nanostructures,
and the nature of the mesoscopic physics which describes the interaction of such nanoscale
systems with macroscopic experimental apparatus.

Because of the regularity of the lattice, we can describe the motion of an electron
in the semiconductor lattice as that of a free particle of effective massm∗, subject to
Dirichlet boundary conditions. What distinguishes mesoscopic physics from most previous
applications of quantum mechanics is that it becomes important to consider explicitly the
nature and effect of boundary conditions for Schrödinger’s equation. The small size of the
nanostructure, in combination with the large mean free path, indicate that the particles exist
in the ballistic regime, and thus we can neglect scattering processes.

Hence the physical problem is, for such structures, modelled by considering the
Helmholtz equation on a configuration space subject to Dirichlet boundary conditions, which
we shall transform into a more complicated differential equation (including an effective
potential term) on a simple rectangular strip of infinite length and widthd.

† E-mail address: ijc@maths.uq.oz.au
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2. The coordinate system

Consider a two-dimensional strip� of infinite length and uniform widthd, embedded in
three-space, subject to regularity conditions:

(r1) � is not self-intersecting, and
(r2) the two curves which are equivalent to∂� are infinitely smooth.

We shall investigate the dynamics of a particle which is free to move on this strip, with
appropriate Dirichlet boundary conditions.

To this end, we construct a coordinate system in which the motion of the particle both
along andacross the strip is most simply described in terms of curvilinear coordinatesq1

andq2.
However, a complicating factor is that, because we are dealing with the embedding of a

two-dimensional manifold in three-space, we have to adopt initially a canonical coordinate
system (q1,q2,q3)—where� lies in the surfaceS defined byq3 = 0, andq3 corresponds
to the displacement of an arbitrary pointP from this surfaceS—and then consider the
dynamics of the particle upon the surfaceS, subject to suitable boundary conditions to
restrict the particle to move on� ⊂ S. This fixes the embedding of the manifold� in R3.

Depending on the geometry of�, we choose as a reference curveC either (c1) an edge,
or (c2) the central axis of the strip. We describeC by a vector valued functionr(q1) of an
arc length parameterq1, wherer ∈ C∞(R):

C = {r(q1) : q1 ∈ R}. (1)

Because the strip� is of uniform width d, the coordinateq2 will assume values either
(c1) between 0 andd, or (c2) between−d/2 andd/2, while q1 can be any real number.

Along this reference curveC, the unit tangent vector is given by the first derivative ofr

t(q1) = r′(q1)

||r′(q1)|| = r′(q1) (2)

noting that this choice ofq1 as arc length requires||r′(q1)|| = 1, and the second derivative
of r yields the unsigned curvature† of the curve

κ(q1) = ||r′′(q1)||. (3)

Unit normal and binormal vectorsn(q1) and b(q1) are then defined alongC in the usual
manner [5]

n(q1) = t′(q1)

κ(q1)
(4)

b(q1) = t(q1) ∧ n(q1) (5)

so that the set of vectors{t,n, b} forms a right-handed orthonormal triad.
The intrinsic torsionτ(q1) of C is then given by one of the Frenet–Serret formulae

b′(q1) = −τ(q1)n(q1) (6)

which describes the tendency for the curve to twist out of the osculating plane (the plane of
t andn). Following da Costa [3, 4], we introduce a new coordinate system by taking linear

† We explicitly attach the label ‘unsigned’ to this usual measure of curvature, in order to differentiate this quantity
from Exner’s signed curvature [7], which will be discussed below.
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combinations of the normal and binormal vectors—the relative proportions determined by
a scalar functionθ(q1)—giving new vectors( n2

n3

)
=

[
cos(θ(q1)) − sin(θ(q1))

sin(θ(q1)) cos(θ(q1))

] ( n(q1)

b(q1)

)
(7)

where the set{t,n2,n3} forms a right-handed orthonormal triad also. Then, the Frenet–
Serret formulae relating unit vectors and their derivatives become

t′

n′
2

n′
3

 =


0 κ cosθ κ sinθ

−κ cosθ 0 T

−κ sinθ −T 0




t

n2

n3

 (8)

where

T (q1) = τ(q1)− θ ′(q1). (9)

The surfaceS of interest is then described by the points

S(q1, q2) = r(q1)+ q2n2(q1). (10)

We now construct a unit normal vectorN (q1, q2), perpendicular toS for all values ofq1

andq2. It is easy to see that we can takeN (q1, 0) = n3(q1). Introducing aq2 dependent
term and imposing the condition that∂S/∂qi is orthogonal toN for i = 1, 2 gives

N (q1, q2) = 1√
K2 + q2

2T
2
(−q2T t +Kn3) (11)

where

K(q1, q2) = 1 − q2κ(q1) cos(θ(q1)). (12)

Note that (r2) requires that the denominator of (11) must never vanish. Hence, there must
not exist a pointS(q1, q2) on S for which [K(q1, q2)]2 + q2

2T
2 = 0. In the specific case

whereT = 0, which is the case surveyed by the literature to date, this requires thatK must
not vanish. WhereT 6= 0, however, there is no need of such a restriction.

Following Martinez [11], an arbitrary pointR in the vicinity of S can now be described
by a suitable choice of the three canonical coordinatesq1, q2, q3

R(q1, q2, q3) = S(q1, q2)+ q3N (q1, q2). (13)

Constructing the metric tensorG by expanding the differential dR in terms of dq1, dq2 and
dq3 and using the equation

||dR||2 = (
dq1 dq2 dq3

)
G


dq1

dq2

dq3

 (14)

we get an expression forG on S by taking the limit asq3 → 0, giving

G =


K2 + q2

2T
2 0 0

0 1 0

0 0 1

 =


g 0 0

0 1 0

0 0 1

 (15)

whereg = det(G) = K2 + q2
2T

2.
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Since we are constructing the Hamiltonian for the particle which is closely bound to the
surfaceq3 = 0, we will approximate the Laplace–Beltrami operator in anε-neighbourhood
of the surfaceS by constructing the Laplace–Beltrami operator using the above expression
for the metric tensor on the surfaceS. It is possible, but beyond the scope of this paper,
to examine the conditions under which the sequence of Laplacians on increasingly thin
ε-neighbourhoods ofS converge in the sense of unbounded operators to this approximation.

This expression for the metric tensor allows us to construct the Hamiltonian for the
particle. More importantly, because of the diagonal structure ofG, we can decompose
the dynamical equations of motion for the particle into two equations—one describing the
motion of the particle upon the surfaceS, and the other describing the motion of the particle
along theq3 coordinate.

3. Construction and analysis of the Hamiltonian

We are considering the case of the quantum particle of effective massm∗ free to move on
a strip�, but nevertheless bound to the surface of the strip.

We approach this situation by expressing the Hamiltonian for a free particle in terms of
our canonical coordinates{q1, q2, q3}, using the Laplace–Beltrami operator

∇2 = g−1/2
3∑
i=1

3∑
j=1

∂

∂qi
g1/2

[
G−1

]
ij

∂

∂qj
. (16)

Because of the form ofG, we have

∇2 = 1√
g

[
∂

∂q1
g−1/2 ∂

∂q1
+ ∂

∂q2
g1/2 ∂

∂q2

]
+ ∂2

∂q2
3

(17)

and we write the time-independent Schrödinger equation for the free particle in the form

(∇2 + k2)ψ(q1, q2, q3) = 0 (q1, q2, q3) ∈ �. (18)

The complication comes from the fact that now we wish to introduce Dirichlet boundary
conditions—and of course the boundary of a two-dimensional manifold� embedded in
three-space is the manifold itself. Accordingly, we need to approach the imposition of
boundary conditions upon the solution of the free particle Schrödinger equation with some
care, because it is not possible to introduce directly Dirichlet boundary conditions. Several
authors [9, 12] have considered approaches that can be taken to circumvent this problem;
the method we shall use here is to introduce a family of suitableinfinitesimal confining
potentialsVλ which approximate a quantum well of infinitesimal width and infinitely steep
walls asλ → ∞, and therefore restrict the domain of the wavefunction to the lesser
dimensional configuration manifold embedded inR3. Since we seek to confine the particle
to the surfaceq3 = 0, Vλ need only be a function ofq3. We will use the scaled confining
potentialUλ(q3) = [2m∗Vλ(q3)]/h̄2 for brevity below.

Hence the problem to consider is in fact(∇2 + k2 − Uλ(q3)
)
ψ(q1, q2, q3) = 0 (q1, q2, q3) ∈ �. (19)

It is this imposition of suitable confining potentials and the associated limiting process, that
is the key to solving the problem of the dimensional reduction of the Hamiltonian.

In the coordinate system(q1, q2, q3), the volume elements dV scale in size as the square
root ofg. Because we require the wavefunctions to be normalized with respect to the volume
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element dq1dq2dq3, we introduce new wavefunctionsχs(q1, q2) andχn(q3), the product of
which is dimensionally scaled by the fourth root ofg, and make the substitution

ψ(q1, q2, q3) = g−1/4χs(q1, q2)χn(q3). (20)

Then equation (19) reduces to

1√
g

[
∂

∂q1
g−1/2 ∂

∂q1

(
χs

g1/4

)
+ ∂

∂q2
g1/2 ∂

∂q2

(
χs

g1/4

)]
χn

+χs d2χn

dq2
3

+ [
k2 − Uλ(q3)

]
χsχn = 0. (21)

This decomposes into the pair of equations

∂

∂q1

(
g−1∂χs

∂q1

)
+ ∂2χs

∂q2
2

− 2m∗

h̄2 Veff(q1, q2)χs + k2
s χs = 0 (22)

and

χ ′′
n + k2

nχn − Uλ(q3)χn = 0 (23)

where the effective potential is given by

Veff(q1, q2) = −h̄2

2m∗

[
− 1

4g2

∂2g

∂q2
1

+ 7

16g3

(
∂g

∂q1

)2

− 1

4g

∂2g

∂q2
2

+ 3

16g2

(
∂g

∂q2

)2
]

(24)

andk2 = k2
s + k2

n.
Equation (23) describes the confinement of the particle to anε-neighbourhood of the

surfaceq3 = 0. However (22) is of much greater interest to us, since it describes the
dynamics of a particle moving on the surfaceS under the influence of an effective potential

Veff(q1, q2) = −h̄2

2m∗

×


− 1

2g2

[(
∂K
∂q1

)2
+K ∂2K

∂q2
1

+ q2
2

(
T T ′′ + [T ′]2

)]+ 7
4g3

[
K ∂K
∂q1

+ q2
2T T

′
]2

− 1
2g

[(
∂K
∂q2

)2
+ T 2

]
+ 3

4g2

[
K ∂K
∂q2

+ q2T
2
]2

 .
(25)

In the remainder of this section, we will separately recover the effective potential results of
da Costa [3] and of Exner anďSeba [7], and then give an indication of why the twisting of
an otherwise linear quantum strip can modify the effective potential both across and along
the strip.

3.1. Particle tightly bound to a curve in three-space

Following da Costa [3], we consider firstly the case of a particle constrained to move along
a reference curveC. This is, of course, an example of a system with only one degree of
freedom, but the technique is illustrative and relevant to this work.

Because of the physical symmetry with respect to arbitrary rotations around the axis
tangent to the curve, we are able to choose the rate at which the coordinate system twists
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aroundC in order to simplify the analysis. The optimal choice of such a twisting factor is
given by integrating the torsionτ(q1) along the curveC, thus satisfying

θ ′(q1) = τ(q1). (26)

Then we haveT = 0. Substituting this into (11) causes (13) to take the form

R(q1, q2, q3) = r(q1)+ q2n2(q1)+ q3n3(q1). (27)

Using equation (14), we see that the metric tensor becomes

G =


(1 − κ[q2 cosθ + q3 sinθ ])2 0 0

0 1 0

0 0 1

 . (28)

Note that in the limit asq3 → 0, this reduces to (15), sinceT = 0.
We then impose a scaled confining potentialUλ(q2, q3) which has the property that the

equipotential surfaces can be described as a family of space curves which are obtainable
from C by a Combescure transformation [14]—thus ensuring that points with the same
values of the coordinatesq2 andq3, but different values ofq1, will have the same potential.
The simplest example of such a potential is

Uλ(q2, q3) = λ
(
q2

2 + q2
3

)
(29)

but other potentials with non-circular equipotential curves are possible, depending on the
nature of the torsion and curvature ofC. With such an effective potential, the time-
independent Schrödinger equation can be expressed as

1√
g

(
∂

∂q1

1√
g

∂

∂q1
+

3∑
i=2

∂

∂qi

√
g
∂

∂qi
+ k2 − Uλ(q2, q3)

)
ψ(q1, q2, q3) = 0. (30)

Applying the substitution (20), we separate (30) into the pair of equations

d2χt

dq2
1

− 2√
g

∂
√
g

∂q1

dχt

dq1
+

[
5

4g

(
∂
√
g

∂q1

)2

− 1

2
√
g

∂2√g
∂q2

1

+ 1

4
κ2 + k2

t

]
χt = 0 (31)

and

∂2χn

∂q2
2

+ ∂2χn

∂q2
3

+ [
k2
n − Uλ(q2, q3)

]
χn = 0. (32)

Now equation (32) describes the confinement of the particle to an tubularε-neighbourhood
of C. Hence in (31) we can take the limit as bothq2 andq3 tend to zero due to the effect
of Vλ. In this limit g = 1, yielding

d2χt

dq2
1

+
[

1

4
κ2 + k2

t

]
χt = 0. (33)

This gives, in agreement with da Costa, an effective potential term

Veff(q1) = −h̄2[κ(q1)]2

8m∗ . (34)

Physically, this means that it is possible for quantum wires to have bound states localized
around regions of curvature. Such bound states appear as resonances when they are observed
by coupling macroscopic electrodes to a finite length quantum waveguide. This has been
experimentally observed by Timpet al [16] for the case of right-angled bends.
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Note, however, that if we attempt to model the dynamics of the particle moving along
C by constructing a strip� which follows the curveC, and twists at such a rate so as
to makeT identically vanish everywhere, equation (25) yields an effective potential term
Veff(q1) = −h̄2κ2 cos2 θ/(8m∗). The error here is due to the discrepancy between the metric
tensor (28), and the approximation (15) which holds for small values ofq3. However, since
we are considering a limiting process in whichq2 andq3 tend to zero at the same rate, we
cannot neglectq3 terms while still consideringq2 terms.

This demonstrates the need for caution in considering the quantum mechanics of
constrained systems, and in particular suggests that with regard to dimensionally reduced
systems, arguments which appeal to the vanishing of tangential components of the force†
may require a certain amount of caution.

3.2. Particle confined to a strip of uniform width in two-space

In the preceding section, we derived an expression for the effective potential that is only
dependent upon the longitudinal coordinateq1. In this section we reconstruct the analysis
of Exner andŠeba [7], in which they derive additional potential terms that depend also
upon the transverse coordinateq2, for the case of a quantum waveguide of uniform‡ width
d existing upon a flat two-dimensional surface.

In this case, we choose one edge of the strip� to be the reference curveC, which will
be taken to lie on the surface of the planeq3 = 0, and can be described as

C = {rx(q1)i + ry(q1)j : q1 ∈ R}. (35)

Such a curve will naturally haveτ(q1) = 0. We shall only consider the case of asimply
bentstrip, in which the signed curvatureγ of C does not change, where

γ (q1) = r ′′
x (q1)r

′
y(q1)− r ′

x(q1)r
′′
y (q1). (36)

Note that the absolute value ofγ is equal to the curvature ofC, from

γ 2 = (r ′′
x r

′
y − r ′

xr
′′
y )

2 = ||r′′||2 − (r′ · r′′)2 = κ2 (37)

becauser′ ⊥ r′′. However, because of Exner andŠeba’s sign convention, the case where
positive values ofq2 correspond to points within� is given by the case in whichγ < 0.
We therefore put

κ(q1) = −γ (q1). (38)

Now having fixed the location of the curveC, we describe the entire quantum strip by
allowing q2 to range between 0 andd. Note that we wish the strip itself to liein the plane
also, and hence we require thatθ(q1) = 0. This means thatT = 0, and that points in the
vicinity of C can be expressed by

R(q1, q2, q3) = r(q1)+ q2n2(q1)+ q3n3(q1) (39)

after the fashion of (13), where

n2(q1) = n(q1) = γ (q1)

|γ (q1)|


0 −1 0

1 0 0

0 0 0

 r′(q1) (40)

† The force on a quantum particle in this coordinate system being given by the gradient of the effective potential,
as discussed by da Costa [3].
‡ Andrews and Savage [1] consider the case of a planar quantum strip of non-uniform width.
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and

n3(q1) = k. (41)

From this, we can see that sinceT = 0, the effective potential (25) can be expressed using
K = 1 − κq2 as

Veff(q1, q2) = −h̄2

2m∗

[
5

4

q2
2(κ

′)2

(1 − κq2)4
+ 1

2

κ ′′q2

4(1 − κq2)3
+ κ2

4(1 − κq2)2

]
(42)

Note that this reduces to (34) in the limitq2 → 0. Furthermore, using equation (38), this
becomes the same expression as that given in equation (3.9) of Exner andŠeba [7]:

Veff(q1, q2) = −h̄2

2m∗

[
5

4

q2
2(γ

′)2

(1 + γ q2)4
− 1

2

γ ′′q2

4(1 + γ q2)3
+ γ 2

4(1 + γ q2)2

]
. (43)

3.3. Particle confined to a strip of uniform width embedded with torsion in three-space

Previous authors [10, 3, 17, 8, 9, 13] have considered the case of a quantum particle which
is constrained to move upon a curved two-dimensional manifold embedded in three-space,
and derived an effective potential which is dependent upon the extrinsic curvature of the
manifold. However, because Exner andŠeba model the dynamics upon a flat surface, this
effect vanishes in their work [7] since a planar surface has no extrinsic curvature. Thus,
from the results of the previous section, it is apparent that in general, the effective potential
must arise from themesoscopic confinement processwhich constrains the particle to move
in a region of widthd across the strip, in addition to theinfinitesimal confinement process
which ensures that the particle moves upon the surface of the manifold.

Consider now a strip of uniform widthd embedded with torsion in three-space, in the
situation whered is small compared with a typical length scaleL over which the relevant
quantities of curvature and torsion vary in the longitudinalq1 direction.

In order to see the relative importance of the different terms in (24), we transform all
variables into dimensionless form, setting

ε = d/L � 1 Ed = h̄2/(2m∗d2)

q1 = xL q2 = yd

κ(q1) = κ̂(x)/L τ(q1) = τ̂ (x)/L

(44)

Veff(q1, q2) = V(x, y)Ed (45)

and

φ(x) = θ(q1). (46)

With this, the expression for the Jacobian transforms to

ĝ(x, y) = 1 − 2εyA(x)+ ε2y2B(x) (47)

where

A(x) = κ̂(x) cos[φ(x)]

B(x) = A2(x)+ [
τ̂ (x)− φ′(x)

]2
(48)

and equation (24) becomes

V(x, y) = 1

4ĝ

∂2ĝ

∂y2
− 3

16ĝ2

(
∂ĝ

∂y

)2

+ ε2

[
1

4ĝ2

∂2ĝ

∂x2
− 7

16ĝ3

(
∂ĝ

∂x

)2
]
. (49)
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Then we have, from (47),

V(x, y) = ε2
[

1
2B(x)− 3

4A
2(x)

] + O(ε4). (50)

Ignoring the terms of orderε4, we get

V(x, y) ≈ ε2
[
− 1

4

[
κ̂(x) cosφ(x)

]2 + 1
2

[
τ̂ (x)− φ′(x)

]2
]

(51)

or, in terms of the original variables,

Veff(q1, q2) = h̄2

2m∗
(
− 1

4

[
κ(q1) cos[θ(q1)]

]2 + 1
2

[
τ(q1)− θ ′(q1)

]2
)
. (52)

From this, it can be seen firstly that the introduction of any twisting of a planar strip with
given curvature reduces the attractive strength of the effective potential in the longitudinal
direction, and hence the tendency for bound states to occur, because| cosθ | 6 1 in the
attractive term in (52). This factor corresponds physically to the projection of the strip onto
the osculating plane.

More interesting is the repulsive term proportional to [τ(q1) − θ ′(q1)]2 which occurs
in (52). In particular, we would expect no binding at all in the longitudinal direction ifVeff

is everywhere repulsive, i.e. if
√

2|τ(q1)− θ ′(q1)| > |κ(q1) cos(q1)| (53)

for all values ofq1.
Geometrically, the twisting of a strip requires particles on it to deviate from motion in

the osculating plane, and the energy required to perturb the particle motion to force this to
occur explains the extra terms in the effective potential. We can conjecture that a similar
result holds for two-dimensional quantum waveguides of any cross sectional shape in which
one dimension is markedly larger than the other.

We hope to return elsewhere to a more detailed analysis of specific geometric examples,
using equation (49).
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